Stroke in TB meningitis: Pathophysiology, Clinical & Management issues

> UK Misra Neurology Sanjay Gandhi PGI Lucknow, India

Plan of presentation

Introduction

- Stroke & infection
- Stroke in non CNS TB & TBM
- Pathophysiology
- Prevention
- >Hyponatremia

Stroke global burden

- >2nd commonest cause of mortality
- >3rd leading cause of disability (WHO 2012)
- >In the developing countries
 - Burden of Stroke 70 %
 - Death & disability adjusted life years 87% (WHO 2012)
 - Infections important etiology

Tuberculosis and the Risk of Ischemic Stroke A 3-Year Follow-Up Study Stroke 2010, 41,244

Jau-Jiuan Sheu, MD, MPH; Hung-Yi Chiou, PhD; Jiunn-Horng Kang, MD, MSc; Yi-Hua Chen, PhD; Herng-Ching Lin, PhD

- Population based study 2000-2003 pts Rx for TB without CSN TB (N 2283) Control (N 6849)
- IS in TB :136(6%) Vs control 256(3.7%)
 Controlling age , gender, DM.lipids, CA, CAD HR for IS 1.52(95% CI 1.21-1.91P<0.001)
- TB is a risk factor for IS and not ICH

Contents lists available at SciVerse ScienceDirect

neurologicalscience

Journal of the Neurological Sciences

journal homepage: www.elsevier.com/locate/jns

Experience of pediatric stroke from a tertiary medical center in North India

Jayantee Kalita, Gourav Goyal, Usha Kant Misra*

> 10 y 2001-2011 follow up 79 pts (1 mo-18 Y)

>IS 62(78.5%), ICH 10 (12.7%) CVST 8.9%)

□ Neuroinfection 25 (31.6%)

• (TBM 21, Fungal 2, NCC1, HepC1)

Cardioembolic 9

- Prothrombotic 5
- Arteritis/dissection 4/3
- Mitochondrial 1
- Cryptogenic 13

Stroke in TBM (Rev)

Stroke in young due to TB vasculitis

- **0** 8% (Dalal et al 1979)
- □ 19% (Thomas et al 1977)
- Stroke usually insidious in onset in the background of TBM
- TIA/RIND rare
- > Aphasia, agnosia, apraxia & VBI rare
- Stroke associated with x 3 worse outcome (Kalita et al 2009, Chan et al 2004)

TBM: pathogenesis

Pathology of TBM

Exudate

Hydrocephalus

Tuberculoma

Stroke in TBM

- Tubercle along pial vessels
- Restriction of tubercular pathology in an arterial territory with a caseous mass in body ? Embolic
- Hemodynamic changes

Vasculitis in TBM

Small & medium size vessels -> infarction Incidence of vasculitis : Autopsy: 41% Angiogram : narrowing 14%, Hydrocephalus 29% (Dalal1979) >CT scan 17-63% >MRI:54%

TB vasculitis :pathology

- Tuberculoma in vessel wall rare
- Streptomycin: vasculitis -> Fibrous endarteritis with narrowing of lumen
- Exudates α arteritis (Tandon & Pathak 1973) ↑caseation in SM Rx cases may contribute
- Reversible narrowing of vessels
- Poor clinical correlation (Wadia and Singhal 1967)
 - Stroke from TB vasculitis without meningitis: (Dalal & Dalal 1989)

Pathology and pathogenesis

 Inflammatory infiltration
 Subendothelial protrusion with or without tubercle
 Uniform concentric subintimal proliferation with narrowing of lumen

Intimal fibrinoid degeneration : leakage of blood in parenchyma

Infiltration in vessels in TBM (Lammie et al 2009)

Media &
 Advent infilt.
 Fibrinoid nec
 Artery & vein
 Equally involved

- Media resistant
- Response to AFB
- Tuberculoma in adventiaia > media or intima

Vascular pathology a function of duration of Rx

- Single or combination
- Duration of illness / Rx determines frequency of changes Infiltration 2-3 wk

As exudates thickens

Proliferation

SM cells in intima 11d Collagen 45-60 d Elastic fibers 16 wk

Necrosis

Infarcts in TBM : hemodynamic Vasospasm, Intimal proliferation

- Thrombosis
- Stretch
- Strangulation

Poor clinical correlation with angiographic abnormality

- Arterial narrowing without corresponding brain pathology
- Uncommon: organizing thrombus in vascular territory that matches the age of infarct: consider other possibilities e.g. syphilis

"We were impressed by the absence of thrombosis as a factor producing arterial occlusion in TBM " (Dastur and Lalitha 1973)

Coagulant and fibrinolytic activity in TBM (Schoeman et al Pediatr Infect Dis J 2007, 26:428)

- ➢ Prothrombotic state in pul TB→ DVT (Robson et al 1997)
- 16 TBM children II-III evaluated Anticoagulant (Prot C, Prot S antithrombin) Pro coagulant: Factor VIII, Plasminogen activator inhibitor(PAI) Anticardiolippin antibodies tPA Prothrombotic profile □ ↓ Anticoagulant : ↓ Prot S \square \uparrow Procoagulant : \uparrow Factor VIII, PAI, ■N TPA : ↓ Fibrinolysis activity Aspirin \square \uparrow Platelet count \uparrow during Rx (\leftarrow IL6) More marked in stage III than Stage II Normalized in 1 st mo of ATT

Pathology and pathogenesis

- Clinical features
- Radiology
- Prevention
- Conclusion

Plan of presentation

- Pathology and pathogenesis
- Clinical features
- Radiology
- Prevention
- Conclusion

Frequency & type of stroke in TBM

> 55/122 (54%) TBM patients had infarction.

- On admission: 42
- By 3 months:13
- Stroke type
 Ischemic 54
 Hemorrhagic tr 7
 Hemorrhage1
 (Kalita et al 2009)

Cortical & subcotical infarcts in TBM

Hemorrhagic infarcts in TBM

Predictors of stroke in TBM

Variable	Stroke	No stroke	Р
↑BP +	6	0	0.007
-	49	67	
Stage I	9	31	0.001
II	37	3	
III	9	51	
Hydrocephalus	30	17	0.001
Exudate	21	11	0.008
Prog: Complete	7	29	0.02
Partial	11	13	
Poor	23	15	

Infarcts in TBM associated with poor outcome at 3 mo but not at 6

Lacuens in TBM & ischemic stroke

Demographic variables	TBM (n=24)	Ischemic stroke (n=24)	p value
Sex 3 Q	13 11	20 4	0.06
Age (y)	32.62±19.09	54.0±15.64	<0.0001
Hypertension	3	11	0.03
Diabetes mellitus	2	6	0.25

(Nair et al Neuroradiol 2009)

Distribution of lacunes in TBM & IS

Region involved	TBM (n=24)	lsch stroke (n=24)	р
Caudate nu	9 (37.5)	2 (8.32)	0.04
Lentiform nu	15 (62.4)	13 (54.16)	0.77
IC Ant limb	5 (20.8)	2 (8.32)	0.42
IC Post limb	5 (20.8)	7 (29.16)	0.74
IC Genu	6 (25)	1 (4.16)	0.1
Ant thalamus	8 (33.3)	3 (12.48)	0.17
Post thalamus	5 (20.8)	9 (37.5)	0.34

Caudate infarct in TBM

Infarction in ischemic stroke : thalamus & post limb of internal capsule

ischemic stroke *(Hsieh et al 1992)*

TB Zone:

Ant lat

thalamus

caudate, genu

- Lacunes
 - Anterior in TBM in 70.8%
 - Posterior in IS 91.6%
- > TBM:
 - Medial str.
 - Thalamotuberal
 - Thalamoperforate
- IS:Lateral striate vessels
- Posterior location in TBM may be due to coexistence of IS risk factors (Nair et al, Neuroradiology 2006)

Ischemic Zone: Post limb, lentiform PL thalamus

Hemorrhagic lesion in TBM

- >32 F Fever, headache 4 mo
- Alt sensorium 1mo
- LL weak 1 wk
- Pupils sluggish
- Ppapilloedema
- >LL power 2/3

Case report

> CSF

Cells= 400 (P-60%, ly-40%)

Protein= 495 mg/dl

Sugar = 21 mg/dl (80 mg/dl RBS)

RHZE

- 2 mo sudden worseni
 - ? Hydrocephalus
 - ? Stroke

Stroke

TBM with hydrocephalus, arachnoidits & ICH

Aneurysm or hemorrhage in TBM

Author yr	Age /sex	Site aneurysm	ICH	Casue
Brwon 1951	??	??	-	Clsoe TBculoma
Suwanweb 1972	22F	BL ACA, R MCA, L PCA	=	Ca, infl exudate
Whelan 1981	??	L MCA rrifurcation	-	Clsoe Tbculoma
Leguarda 1988	<14	MCA horizontal part	-	Infl exudate
Gupta 1994	24 M	MCA	-	Infl exudate
Griffith 2000	9 M	PCA	SAH, IVH	Ifl exudate
Tsuboi 2000	55F	MCA	SAH, IVJ	

MR angiography in tuberculous meningitis Acta Radiol 2012, 53:324

Jayantee Kalita¹, Sreeram Prasad¹, Pradeep K Maurya¹, Sunil Kumar² and Usha K Misra¹

>N67 age 34 (3-75): Abn 61(91%)

>MRA abnormal in 34(50%)

- MCA 21, PCA 14, ICA 8, ACA 8, Basilar 5, vertebral & sup cerebellar 1 each
- □Corresponding infarct 61.8%
- □Abn both ant & posterior territoreis 25%
- MRA abnromality related to Hydrocephalus & infarct
- Infarction at 3 mo : abn MRA 47%

TBM MRA clinical correlation

21y M TBM
Narrow
PCA, MCA
ACA
Infarct OCC
BG BL

36 y M TBM stage R MCA narrowing R PCA occlusion Coresponding infa

14y M TBM stage III (a) R PCA occlusion Parito occipital Infar & R frontal Pt died at 5 mo

Case report

 22y Q TBM stage II
 RICA, PCA, ACA bloc
 Infarction in Parito occipital & cerebellar

Usha Kant Misra*, Jayantee Kalita, Pradeep Kumar Maurya

Stroke in tuberculous meningitis

Journal of the Neurological Sciences journal homepage: www.elsevier.com/locate/jns

Contents lists available at ScienceDirect

territory >MRA normal

>30Y ♂ Stage III TBM Cortical & BG infarct in MCA

Clinical & MRA correlation

Angiographic findings in TBM

Author	Rojas Echev eri 96	Gupt a 94	Gupta 79	Leeds 71	Airon 91	Kalita 13
Vessels narrow/o ccluded	46	50	48	100	93	110
ICA	8%	50%	4%	40%	93%	23.5%
MCA	42%	40%	44%	60%		62%
ACA	33%	15%				15%
PCA	13%	50%				41%
Modality	DSA	MRA	X-angio	X-angio	X-angio	MRA
Pts N0	24	20	50	5	14	67

Case report 50y²:fever 1mo, drowzy paraplegia 15 d

- CSF: protein 495mg%, 100l/mm3 sugar 30(121) mg/dl
- D2: RHZE
- >D5 :Asymmetric pupil :herniation >D6/D 7 : EVD → revised
- ► D8 Mechanical ventialtion
- D10 :Ext posturing deep coma
 D30: GI bleed, DIC & VAP
 D41 VP Shunt

Worsening after shunt

CSF over drainage : \Box ICH / SDH \downarrow CSF buyoncy \rightarrow Traction on vessels Hemispheric shift & infarct Due to CSF overdrainage EVD over drainage

Lumbar pressure upward herniation (Adams et al 2007)

Preventing stroke in TBM

Corticosteroids

- □↓ mortality & ↑outcome
- But not the frequency of stroke/hemiplegia

➢ Aspirin

- Anti inflammatory
- Antiplatelet
- Antioxidant
- Used for stroke prevention

≻Aim

To evaluate the role of aspirin in preventing stroke in TBM

Role of aspirin in TBM

Effect of aspirin, mortality & outcome in TBM at 3 mo

Contents lists available at ScienceDirect

Journal of the Neurological Sciences

journal homepage: www.elsevier.com/locate/jns

Role of aspirin in tuberculous meningitis: A randomized open label placebo controlled trial

U.K. Misra*, J. Kalita, P.P. Nair

Department of Neurology, Sanjay Gandhi PGIMS, Lucknow, India

Hyponatremia in TBM (N=76)

Occurred in 34(45%) pts Mild (134-130 Meq/L) 3 Moderate (129-120 Meq/L) 32 Severe (<120 Meq /L) 8 Related to CSW SIADH

- MV
- Co-morbidity

CSW related to severity of TBM

CSW 17 SIADH 3 Miscellaneous 14

(Misra et al J NS 2016)

Cerebral salt wasting in TBM

Parameter	CSW(N34)	No CSW (N 47)	Ρ
Corona radiata inf	10 (67.5%)	3 (19%)	0.01
Hydrocephalus	7 (9.4%)	10 (42%)	0.001
Exudate	28 (82.4%)	26(60.5%)	0.04
mRS >2	21(64%)	10(26%)	0.01

Infarction in TBM with CSW

15 y M TBM stage III
 Periventricular
 Int border zone infarct
 CSW Dx D1

Internal borderzone infarct in TBM with CSW

45 y M TBM stage III ,DM2 , Hypt CSW d 40 , stroke 68 ↓Na corrected after 12 d polyurea after 68 d

Conclusions

Stroke in TBM is different

- □No TIA, RIND, more subtle
- ■TB zone no stroke risk factor, Ischemic zone pts are older and have DM2, Hypt ↑ lipid
- Mainly subcortical :tubercular / internal border zone
- Asymptomatic 2/3, symptomatic1/3
- Occurs at any stage of TBM
- Multi-factorial

Conclusions

Cause of stroke

- Vasculitis
- Prothrombotic state
- Hemodynamic factors, CSW / hypovolemia,? Hypotension hypo-perfusion
- Co-morbidities
- Multipronged approach to stroke prevention in TBM

Possible mechanism of infarction in TBM

- Haemorrhoelogy
- Change in micro vascular bed
- Response of vessels to neural
 - or neurochemical factors
- Immunogenic phenomena Localize TB antigens in the vessel wall: endothelial, sub endothelial or smooth muscles
 - (Shankar et al 1989)