Using zebrafish to understand inflammation in TB meningitis

Cressida Madigan (UCLA)
Lalita Ramakrishnan (Cambridge)
David Tobin (Duke)

Acknowledgements
Alvaro Sagasti (UCLA)
Stephen Smale (UCLA)

Funding
NIAID T32, NIAID F32
NIH Director’s New Innovator Award
NIH Director’s Pioneer Award
What are the initial events in TBM pathogenesis?

- Host factors: TNF, laminin A, TIRAP, TLR2, LTA4H
- Bacterial factors: pknD
- Route of CNS entry? Cells involved?
- What initially triggers the neuroinflammation?
- *In vivo* models: rabbit, mouse, guinea pig
1. Why zebrafish?

2. LTA4H modulates inflammation in TBM

1. Modeling CNS invasion
1. Why zebrafish?

2. LTA4H modulates inflammation in TBM

1. Modeling CNS invasion
Advantages of the zebrafish model to study mycobacterial pathogenesis

1. Orthologs for 70% of human genes
2. Genetics: CRISPR, morpholinos, transgenics
3. Established TB model (*M. marinum*)
4. Optically transparent → live imaging

Live imaging neuroinflammation in an intact animal

brain - action potentials

intracellular calcium

spinal cord - infection

M. marinum
myelin
macrophages

from Ahrens 2013

Madigan, submitted
1. Why zebrafish?

2. LTA4H modulates inflammation in TBM

1. Modeling CNS invasion
Humans and fish: low or high *lta4h* = increased mycobacterial disease severity

Zebrafish + *M. marinum*

- *lta4h* low
- *lta4h* high

Humans + TB meningitis

- *lta4h* intermediate
- *lta4h* low
- *lta4h* high

Survival vs. Days after enrollment

- low LTA4H → TNF
- high LTA4H → dexamethasone

LTA4H genotype of TB meningitis patients predicts treatment response to dexamethasone

without dexamethasone

- *Ita4h* low
- *Ita4h* intermediate
- *Ita4h* high

with dexamethasone

- *Ita4h* low
- *Ita4h* intermediate
- *Ita4h* high

Ita4h low \rightarrow low TNF \rightarrow low inflammation \rightarrow dexamethasone hurts

Ita4h high \rightarrow high TNF \rightarrow high inflammation \rightarrow dexamethasone helps

1. Why zebrafish?

2. LTA4H modulates inflammation in TBM

1. Modeling CNS invasion
1. Why zebrafish?

2. LTA4H modulates inflammation in TBM

1. Modeling CNS invasion
 – entry?
 – first mediators of inflammation?
How do mycobacteria enter the CNS?

Blood
- *E. coli* K1 strain
- *N. meningitidis*
- *S. agalactiae* (group B)
- *S. pneumoniae*
- *L. monocytogenes*
- *Trypanosoma spp.*
- *Borrelia sp.*
- *C. albicans*
- *C. neoformans*
- *H. influenzae* type b

Endothelial cells

CNS

Transcellular
- *Borrelia sp.*
- *Treponema pallidum*
- *Trypanosoma spp.*
- *S. pneumoniae* (?)

Paracellular
- *C. neoformans*
- *L. monocytogenes*
- *S. pneumoniae* (?)

“Trojan horse”

Adapted from Barichello 2013
Zebrafish larvae have a functional blood-brain barrier

Hallmarks of mammalian blood-brain barrier:
1. Endothelial tight-junction proteins
2. Size-selective

Madigan, unpublished
M. marinum attach to CNS blood vessels and replicate

Madigan, unpublished
Live imaging infection in an intact animal

(1) tail vein *M. marinum*

(2) tail vein dextran

(3) brain

Madigan, unpublished
Mycobacterial entry into CNS: working model

1. vessel attachment
2. vessel exit
3. vessel leakage

0-2 days
3-4 days
5 days

M. marinum
dextran

Madigan, unpublished
M. marinum attach to vessels without macrophages...

M. marinum
macrophages (mpeg1-dsRed)
endothelial cells (kdrl-GFP)

Madigan, unpublished
...but after vessel exit, macrophages/microglia arrive

M. marinum macrophages/microglia (*mpeg1-dsRed*) dextran

Madigan, unpublished
How do mycobacteria enter the CNS?

- E. coli K1 strain
- N. meningitidis
- S. agalactiae (group B)
- S. pneumoniae
- L. monocytogenes
- Trypanosoma spp.
- Borrelia sp.
- C. neoformans
- H. influenzae type b
- C. albicans
- C. neoformans
- S. pneumoniae (?)
Summary

1. LTA4H modulates inflammation in TBM
 • high \(lta4h \) = high TNF = give dexamethasone
 \(\rightarrow \) New therapies?

2. Modeling CNS invasion in zebrafish
 – Mycobacterial entry does not require macrophages
 – Blood-brain barrier breakdown
 \(\rightarrow \) Mechanism of entry: endothelial cell tight junctions?
 \(\rightarrow \) How does inflammation contribute to vessel leakage?
 \(\rightarrow \) Host/pathogen factors?
Summary

1. LTA4H modulates inflammation in TBM
 • high $lta4h = high$ TNF = give dexamethasone
 \rightarrow New therapies?

2. Modeling CNS invasion in zebrafish
 – Mycobacterial entry does not require macrophages
 – Blood-brain barrier breakdown
 \rightarrow Mechanism of entry & vessel leakage?
Future Directions:
whole animal screening for new TBM therapies

- 96-well plate + compounds
- vessel attachment
- bacteria in CNS

image wells

total bacterial burden
Screen identifies zebrafish mutants with increased *M. marinum* susceptibility

Mutagen + *M. marinum*

| 25% +/+ | 50% mutant/+ | 25% mutant/mutant |

maternal genes only

caudal vein *M. marinum*

Tobin 2010, Tobin 2012
Other genotype-specific therapies?

inadequate inflammation: 15-LOX inhibitor, LXA₄R antagonist

excess inflammation: aspirin, LTB4DH inducer, LTB₄R antagonist
Vessels near *M. marinum* become permeable

Intact

Leaking

| dextran | M. marinum dextran macrophages/microglia |

% animals with dextran leakage

days post infection

0 2 3 4 5 6

80 60 40 20 0
Zebrafish- *M. marinum* model shows
LTA4H activity increases TNF and inflammation

Prediction:

ltA4h low → low TNF → low inflammation → dexamethasone hurts

ltA4h high → high TNF → high inflammation → dexamethasone helps

Tobin 2010, Tobin 2012