CNS Barriers and Immune Responses in Mouse CNS TB

Zsuzsa Fabry & Matyas Sandor
University of Wisconsin-Madison
WI, USA
Basic Question: What are the mechanisms that govern CNS TB?

• Question 1: What is the mechanism of *Mtb* dissemination into the CNS?
• Question 2: What are the CNS and systemic host responses to CNS TB?
Hypothesis: Infected CD11chigh cells traffic from granulomas and might contribute to dissemination to the CNS

Schreiber et. al 2011 JCI, Harding et. al 2015 Sci Rep
DCs produce MMP2 and 9 and DC transmigration through BBB is inhibited by MMP inhibitors (TJ proteins are substrate for MMPs)

Zozulya A.
Mtb infection of CD11chigh cells leads to their decreased mobility (and chemokine receptor expression)

Fruzsina Walter and Trey Gilpin, AAI presented abstract 2017

35 mm glass bottom dish

Plugs

RPMI Cells

2 mm migration field of view

20 mm coverglass, No. 1.5 (0.16-0.19 mm thickness)

Non-inf. DC

Inf. DC

Accumulated distance (unit)

Velocity (units)

Fruzsina Walter and Trey Gilpin, AAI presented abstract 2017
BMDC transmigrate through brain microvessel endothelium by a MIP1α and MMP dependent manner. DC produced MMP 2 and 9 reorganize occludin and decrease electrical resistance. MMP blockers decrease DC migration (Zozulya A et al 2007 JI).

In an in vitro blood brain barrier model infected BMDC has limited capacity to migrate through
Infected CD11c^{high} cells cross the Blood Brain Barrier (BBB) at sites of cellular aggregates formed with P25 PBMCs.
CD11chigh cell invasion and foci formation in the choroid plexus

Bar: top row: 0.5 mm, bottom row: 100 µm.

Fruzsina Walter and Trey Gilpin, AAI presented abstract May 2017
Basic Question: What are the mechanisms that govern CNS TB?

- **Question 1:** What is the mechanism of *Mtb* dissemination into the CNS?
 - CD11c expressing dendritic cells might contribute to *Mtb* entry into the CNS.
 - Infected DCs induce inflammatory foci formation that correlates with dissemination.
 - Meninges and choroid plexus are potential portals.
Basic Question: What are the mechanisms that govern CNS TB?

• Question 2: What are the CNS and systemic host responses to CNS TB?
Mtb Infection is Controlled in the CNS

Hernandez, G. Manuscript in submission AJP 2017
Granuloma formation in the brain following IC *Mtb* inoculation

Hernandez, G. Manuscript in submission AJP 2017
CD11c_{high} Dendritic Cells Infiltrate into the CNS Following IC *Mtb* Infection

Hernandez, G. Manuscript in submission AJP 2017
IC *Mtb* leads to robust infiltration of IFNγ-producing T lymphocytes

- Post IC infection there is an IFNγ dominant T cell response in the CNS
- Most are in granulomatous lesions
- P25 transgenic T cells are seen directly interacting with eYFP+ cells in the CNS

Hernandez, G. Manuscript in submission AJP 2017
Specific anti-bacterial T cell expansion is induced earlier by IC *Mtb* compared to lung infection.
IFNγ-producing T lymphocytes and CD11c cells most likely access the CNS via the choroid plexus.
CNS *Mtb* infection induces microglia and astrocyte activation in the brain.

Myobacterium Tuberculosis (*Mtb*) induction microglia and astrocyte activation in the brain.

- C1q?
- TNFα?
- IL1α?

Neurotoxin?

Neuronal Death?

Reactive Astrocytes

- A1?
- Factor B?
CNS *Mtb* infection induces complement production in the brain

Aisha Mergaert, unpublished data
CNS *Mtb* infection increases Blood Brain Barrier (BBB) “leakage” in the brain

Naïve | 1 Week | 3 Weeks | 7 Weeks

Aisha Mergaert, unpublished data
Basic Question: What are the mechanisms that govern CNS TB?

Question 2: What are the CNS and peripheral host responses to CNS TB?

- Gliosis (astrocytes and microglia)
- Complement activation
- Vascular leakage (IgG staining)
- Robust T cell priming and infiltration via choroid plexus (mostly)
- Inflammatory myeloid cell accumulation
- Strong and early protection

School of Medicine and Public Health
UNIVERSITY OF WISCONSIN-MADISON
Conclusions: What are the mechanisms that govern CNS TB?

- Infected dendritic cell-induced cellular aggregation promotes bacterial dissemination into the brain.
- Protective immunity against CNS TB is dominated by IFN-γ producing Th1 cells – entry though choroid plexus.
- Bacteria-specific T cell responses are earlier compared to the lung.
What can we learn from murine CNS TB models that could contribute to clinical CNS TB treatment?

- Inhibition of infected DC migration across the BBB might contribute to therapies: MMP blockers? Others pathways for interrupting migration?
Acknowledgments

Matyas Sandor
Jeff S. Harding
Heidi A Schreiber
Melinda Herbatch
Sarah Marcus
Aditya Rayasam
Martin Hsu
Anna Ritter
Fruzsina Walter
Trey Gilpin
Gianna Hernandez
Aisha Mergaert
Khen Macvilay
Laura Schmitt-Brunold
Joseph Bednarek
Christian Gerhart

Funding
NIH/NIGMS grants T32 GM007507 and T32 GM081061, NIH/NIAID/NINDS grants RO1-NS37570, R01 NS076946, NMSS RG 3113A1, AHA 15PRE25500022