Rabbit Model of TB Meningitis in Children

Liz Tucker, MD
NIH NICHD K12 PCCTSDP Scholar
Pediatric Critical Care Attending
Johns Hopkins Bloomberg Children's Center
NIH TB Meningitis Workshop
5/22/17
Disclosures

- No conflicts of interest or financial disclosures to report
Background: CNS Tuberculosis

• WHO 2016: 1 million new childhood cases
• Central Nervous System (CNS) Tuberculosis (TB) is the most severe form of extrapulmonary TB
 – TB meningitis
 – Tuberculomas
• Disproportionately affects young children!
• Difficult to diagnose
Background: CNS Tuberculosis

• Fatal without treatment
• Despite treatment
 – Mortality is high (13-50%)
 – Morbidity is high in survivors
• Poor neurodevelopmental outcomes unique to children
 – Hydrocephalus
 – Infarcts

Background: Treatment

• Long duration
• Poor CNS penetration
 – Ethambutol, Rifampin
• No current tools for therapeutic monitoring
• Ideal target for non-invasive imaging modalities
• New additions:
 – High-dose Rifampin
 – Fluoroquinolones

Ruslami 2013, Heernskerk 2016, Thwaites 2011
Background: Microglia

- Major immune cells of brain
- Infection causes microglial activation
- Activated microglia/macrophages highly express TSPO
- Important for normal development
 - Neurodevelopmental apoptosis
 - Neurogenesis
 - Synaptogenesis

Objective

• To establish a pediatric CNS TB animal model

• To investigate microglia’s unique role in CNS TB infection in the developing brain
In-vivo Pediatric Rabbit Model

New Zealand White Rabbits
In Vivo Subarachnoid Injection of
Mycobacterium tuberculosis H37Rv

- **Day 1**: Birth
- **Day 4-8**: Postnatal
- **Day 14**: Gross Pathology and Immunohistochemistry
- **Day 21**: Bacillary Burden
- **Day 28**: Imaging with Biocontainment System
- **Day 35**: Neurobehavioral Testing
Bio-Safety Level 3 Facility
Exudative Meningitis and Tuberculoma Formation After Subarachnoid Infection

Infected

Control

14 Days Post-Infection

Infected

21 Days Post-Infection

Exudate

21 Days Post-Infection

Tucker et al, DMM 2016
Exudative Meningitis and Perivascular Infiltrate

H&E Staining

Tucker et al, DMM 2016
Tuberculoma with Central Necrosis & Cellular Rim

H&E Staining

Tucker et al, DMM 2016
Activated Microglia Surrounding Tuberculoma Formation

- Large Cell Bodies
- Short, Thick Processes
- Activated Microglia
- Tuberculoma

Iba-1 Microglia Stain
DAPI Nuclear Stain
40X
Subarachnoid Infection Causes Microglia Activation

Microglia Iba-1 Quantification

- Activated Microglia/Total Microglia
- Infected
- Uninfected

- Small Cell Bodies
- Large Cell Bodies
- Long Processes
- Short Processes
Objective

• To use noninvasive imaging modalities to:
 – Demonstrate tuberculosis-associated neuroinflammation

 AND

 – Elucidate pharmacokinetic parameters
Non-Invasive Neuroinflammation Imaging

• Tool to monitor current or novel treatments
• Radioiodinated DPA-713
124I-DPA-713 PET/CT Imaging of Neuroinflammation

- 2nd Generation synthetic ligand of TSPO
- Highly expressed on activated microglia & macrophages
- Imaged 1 & 24 hours post-injection

Biocontainment for Bio-safely Level 3
3-D 124I-DPA-713 PET/CT

M. tuberculosis Infected

Uninfected Control

24 hr

Tucker et al, DMM 2016
Localization of 124I-DPA-713 Correlates with CNS TB Lesion on Gross Pathology

3 Weeks Post-Subarachnoid *M. tuberculosis* Infection in Rabbit Kits

Tucker et al, DMM 2016
124I-DPA-713 Accumulation in CNS TB Lesion

- Infected N=2 for 1 & 24 hours
- Infected N=1 for 48 hours
- Uninfected N=1 for all time points

2 ROIs for each animal

Tucker et al, DMM 2016
Conclusions

• Established the 1st pediatric CNS TB animal model
 – Microglia activation
 – Neurologic abnormalities
 – Exudative meningitis and brain tuberculoma formation on gross pathology
 – Radioiodinated DPA-713 accumulates in tuberculomas & correlates with neuroinflammation on gross pathology & histology
Acknowledgements

Johns Hopkins Anesthesiology and Critical Care Medicine
Dr. Sujatha Kannan’s Lab
Elena Zhang
Elizabeth Nance
Elizabeth Smith
Sarah Bertrand
Brittaney Ritchie

Johns Hopkins Center for Tuberculosis Research & Center for Infection and Inflammation Imaging Research
Dr. Sanjay Jain’s Lab
Supriya Pokkali
Alvaro Ordonez
Mariah Klunk
Peter DeMarco
Yong S. Chang

Funding
All Children’s Hospital Foundation Grant (E.W.T.)
NIH NICHD PCCTSDP 2K12HD047349-11 (E.W.T.)
ACCM StAAR Mentored Training Award (E.W.T.)
Director’s Transformative Research R01-EB020539 (S.K.J.)
New Innovator Award DP2-OD006492 (S.K.J.)
NIH R01HD069562 (S.K.)

Johns Hopkins Center for Nanomedicine at Wilmer Eye Institute
Dr. Kannan Rangaramanujam’s Lab
Anjali Sharma
Josh Porterfield
Fan Zhang
Siva Pramodh Kambhampati

Johns Hopkins Russell H. Morgan Department of Radiology and Radiological Science
Dr. Catherine Foss

Johns Hopkins All Children’s Hospital
Center for Resources in Integrative Biology and Molecular Determinants Core
Dr. David Graham’s Lab

University of Cape Town and Red Cross War Memorial Children’s Hospital
Dr. Tony Figaji
Ursula Rohlwink

Rabbits