Molecular Imaging for Infections

Alvaro A. Ordonez, M.D.

Tuberculosis Meningitis Workshop – NIH - May 22, 2017

Questions for TB Meningitis

- 1. Is there *M. tuberculosis* in the brain?
- 2. What is the extent of that infection?
- 3. Is the treatment working?

Problem - Diagnosis of Bacteria

Fundamental diagnostic: 1884 Need to isolate the bug Fundamental diagnostic: 2017 Need to isolate the bug

Solution - Take a Picture

Normal brain CT scan of a 3-year-old child with stage 3 tuberculous meningitis

Thwaites et al. Lancet Neurology, 2013.

Imaging TB Meningitis

• Anatomical Imaging (CT, MRI)

Center for Infection and Inflammation Imaging Research Johns Hopkins University School of Medicine

- CT useful to detect hydrocephalus and vascular complications
- MRI is more sensitive than CT in determining the extent of meningeal and parenchymal involvement.
- MR angiography vascular disease
- MR spectroscopy can be used to characterize tuberculomas and differentiate them from neoplasms
- Problem: lack of specificity and delay in tissue changes

Imaging TB Meningitis

Imaging Inflammation
– ¹⁸F-FDG PET

Center for Infection and Inflammation Imaging Research Johns Hopkins University School of Medicine

- Possible detection of earlier findings
- Host dependent
- Very sensible
- Not specific

MRI

Gambhir et al. Journal of the Neurological Sciences, 2016.

¹⁸F-FDG PET/CT correlates with treatment outcome in patients with MDR-TB

- Prospective imaged 35 adults with MDR-TB, on second-line TB treatment, using ¹⁸F-FDG PET and CT at 2 and 6 months after starting treatment .
- Imaging assessed by radiologists or automated analyses.
- ¹⁸F-FDG PET at 2 months and automated CT at 6 months were more sensitive than sputum smear or solid culture conversion at 2 months, these differences were not statistically significant, possibly because of the small sample size in our study.
- Automated methods were more reliable than radiologists.

Imaging TB-associated inflammation with iodo-DPA-713

Iodo-DPA-713 is a ligand for translocator protein (TSPO) Up-regulated in inflamed microglia and macrophages TB lesions full of activated macrophages

TSPO expression in macrophages within TB lesions Foss et al. Journal of Infectious Diseases. 2013

(blue-green)

 4.06 ± 0.52

¹⁸F-FDG-PET

(orange) 2.00 ± 0.28

¹²⁵I-DPA-713 vs ¹⁸F-FDG: Imaging TB-inflammation to monitor treatments

Pulmonary ¹²⁵I-DPA-713 SPECT, *but not* ¹⁸*F*-*FDG PET*, correctly identified the bactericidal activities of the TB treatments as early as 4 weeks after starting treatment (P < 0.03)

Iodo-DPA-713 bound activated (CD68⁺) antigen presenting cells and imaging correlated with tissue TNF- α (Spearman's ρ = 0.94; P < 0.01)

Significant correlation was found between an increase in ¹²⁵I-DPA-713 SPECT activity (but not with ¹⁸F-FDG PET) with bacterial burden at relapse (Spearman's $\rho = 0.79; P < 0.01$)

Ordonez et al. Antimicrob Agents Chemother. 2015

Imaging TB-inflammation using ¹²⁴I-DPA-713 PET in a Rabbit model of Pediatric TB meningitis

Searching for Bacteria-Specific tracers

Searching for Bacteria-Specific tracers

	Detect the presence of bacterial infection		e n	Ic	Identify the "type" of bacteria			
Name		S. <i>aureus</i> (Gram-positive)	E. c (Gram-ne	o <i>li</i> egative)	P. Aeruginosa	Mycobacte	eria*	Macrophages (J774)
L-Arabinose [1-14C]		0.41 ± 0.03	41.61 :	£ 9.91	0.21 ± 0.02	0.28 ± 0.01	(Mtb)	0.18 ± 0.01
Cellobiose [³ H]		1.81 ± 0.10	0.80 ±	0.05		0.13 ± 0.02	(Ms)	
D-Lyxose [1- ¹⁴ C]		0.03 ± 0.01	1.86 ±	0.14	0.12 ± 0.04	0.35 ± 0.08 (Mtb)		0.04 ± 0.01
D-Mannitol [1-14C]		68.40 ± 7.39	81.80 :	£ 1.96	0.69 ± 0.05	0.29 ± 0.13 (Mtb)		0.12 ± 0.01
Methyl-α-D-glucopyranoside [methyl-14C]		11.01 ± 0.71	26.78 :	± 0.59		0.11 ± 0.01 (Ms)		
PABA [3,5- ³ H]		16.82 ± 1.03	18.99 :	± 5.80	4.02 ± 1.11	32.93 ± 4.73 (Mtb)		0.11 ± 0.01
L-Rhamnose [³ H]		4.96 ± 0.13	4.73 ±	0.07	07 0.24 ± 0.04 3.82 ± 0.84 (Mtb)		(Mtb)	0.60 ± 0.02
Shikimic acid [3- ³ H]		7.54 ± 0.01	1.52 ± 0.02		1.31 ± 0.02	0.17 ± 0.01 (Ms)		
D-Sorbitol [¹⁴ C] (¹⁸ F-FDS) [†]		0.47 ± 0.09	72.20 :	£ 9.09	0.52 ± 0.46			0.21 ± 0.01
D-Xylose [1-14C]		0.31 ± 0.01	73.94 ± 2.06		0.53 ± 0.08	0.18 ± 0.02 (Mtb)		0.19 ± 0.01

*Mycobacterium smegmatis = Ms or Mycobacterium tuberculosis = Mtb

[†] 2-[¹⁸F]-fluorodeoxysorbitol (¹⁸F-FDS) used for uptake assays

Data represented as mean ± SD

2-¹⁸F-PABA for Infection Diagnosis

Collaboration with Stony Brook University

Ordonez and Weinstein et al. Journal of Nuclear Medicine, 2016

2-¹⁸F-PABA for Infection Diagnosis

Collaboration with Stony Brook University

Ordonez and Weinstein et al. Journal of Nuclear Medicine, 2016

Sugar Shot for Bacteria

2-¹⁸F-Fluorodeoxysorbitol (¹⁸F-FDS)

22 October 201

In vitro uptake of ¹⁸F-FDS in Bacterial Pathogens and Mammalian cell lines

Science

¹⁸F-FDS PET can differentiate infection sites from sterile inflammation

¹⁸F-FDS uptake in clinical Multidrug-Resistant Enterobacteriaceae strains

- Extended-spectrum beta-lactamase (ESBL)-producing Enterobacteriaceae
- Carbapenem-resistant Enterobacteriaceae (CRE)

Monitoring Antimicrobial Efficacy in Multidrug-Resistant Infections

Weinstein and Ordonez et al. Science Translational Medicine, 2014.

Are we using the right doses of antibiotics?

- Current doses based on blood levels and historic measures of efficacy
- Inappropriate levels in target tissues can lead to treatment failure, selection of resistant organisms, or toxicity / organ failure
- Rifampin, first line TB drug, with significant potential for shortening TB treatments

Center for Infection and Inflammation Imaging Research Johns Hopkins University School of Medicine

Liu *et al. Journal of Medicinal Chemistry*, 2010. DeMarco and Ordonez *et al. Antimicrobial Agents and Chemotherapy*, 2015.

Levels in brain are 14.55 ± 1.67% of blood concentrations

DeMarco and Ordonez et al. Antimicrobial Agents and Chemotherapy, 2015.

Summary

- Noninvasive imaging can provide novel insights into disease pathogenesis, that may not be possible with conventional methods
 - Monitoring inflammation: ¹⁸F-FDG and ¹²⁴I-DPA-713
- Need for pathogen-specific imaging
- Pipeline of bacteria-class specific imaging probes
 - 2-¹⁸F-PABA a folate precursor promising agents for bacterial imaging (including *M. tuberculosis*)
 - ¹⁸F-FDS can rapidly and specifically detect *Enterobacteriaceae*
- PET can be used as a non-invasive alternative for measuring multicompartment drug PK *in situ* and study drug penetration (and toxicities) at the site of infection, and into privileged sites (e.g. TB meningitis)

Sanjay Jain Lab

Ed Weinstein Supriya Pokkali Liz Tucker Alvin Kalinda Vikram Saini Mariah Klunk Peter DeMarco Lauren Bambarger Yongseok Chang Allison Murawski

JHU

Carlton Lee Maunank Shah Kelly Dooley

Maryland TB Counties

Kelly Russo Elizabeth Menachery Lucia Donatelli Kimberly Townsend

JHU Radiology

Catherine Foss Ronnie Mease Martin Pomper Bob Dannals Steve Rowe Akimosa Jeffrey-Kwanisai Ghedem Solomon Mahadevappa Mahesh Martin Lodge

Stony Brook University

Peter Tonge Peter Smith-Jones Hui Wang Zhang Zhuo

Funding

NIH Director's Transformative Research Award R01-EB020539 NIH Director's New Innovator Award DP2-OD006492 NHLBI R01-HL116316, R01-HL131829 and NIAID DAIDS supplement