Drug Delivery to the CNS: Barriers that May Influence Efficacy in Treating Tuberculosis in the Brain

Translational research in CNS Drug Delivery

- Must keep in mind the big questions !

Why Does a Drug Work ??

Why Doesn't a Drug Work ??

Why does this one work, and that one doesn't ??

Overview

CNS Drug Delivery in the Era of Systems Biology

Examine drug pharmacokinetics / delivery to CNS sites across several scales

Connect - Disconnect of the PK-PD Relationship

Understanding Sources of Variability in Drug Response Variability Cycle

Genetic Factors

- drug targets
- drug transporters
- drug metabolizing enzymes

Environmental Factors

- induction
- inhibition

Physiological Factors

- age, disease, etc.

"Locations" of Variability in Drug Efficacy In CNS Tuberculosis

Targeted Bioavailability

Mechanisms that influence the fraction of the drug in the systemic circulation that is available for distribution to target tissue and the exposure of the tissue to the drug

- distribution of blood flow
- ratio of total clearance to a distributional clearance

Distributional clearance - membrane permeability, competing carrier-mediated transport (influx or efflux), protein-binding, intracellular metabolism, tissue transit time, capillary structure

Total clearance - will affect the availability of the drug in the blood to distribute to the tissue

rug ction

Targeted Bioavailability

One "Location" : Blood-brain Barrier

Importance of Transporters in the CNS Disposition of Drugs

From Lee and Gottesmann. Journal of Clinical Investigation, 1998 illustration by Naba Bora, Medical College of Georgia. **GLUT1**

P-gp (p-glycoprotein)

Co-localization GLUT1 - P-gp

Modifed from:

Therapeutic decisions limited by available data at specific sites

Compartmental model for solute exchange in the brain

Drug "Binding" – Plasma and Brain

Kinetics of distribution - Rate and Extent

Rate (onset) - described by maximum concentration (Cmax) Extent (exposure) - described by area under the curve (AUC) Ratio of areas gives tissue partition coefficient

$$Kp = \frac{AUC_{brain}}{AUC_{plasma}} \qquad Kp, uu = \frac{AUC_{brain-unbound}}{AUC_{plasma-unbound}}$$

Total concs

Unbound concs

Extent - partitioning of free concentration

$$K_{p,free} = \frac{CL_{in}}{CL_{out}}$$

Sum of clearances in each direction

$$K_{p,free} = \frac{PS + CL_{uptake}}{PS + CL_{efflux} + CL_{metabolism} + CL_{bulk}}$$

Extent - partitioning into a specific brain region

Representative Case Study: The Treatment of Glioblastoma with Inhibition of P53 Degradation – MDM2 Inhibitor

Minjee Kim, Jann Sarkaria

Choice of PDX Glioma Model

GBM Line	MDM2 amplification	MDM2 expression	p53 status
10	no	low	wildtype
12	no	low	mutant
102	yes	low	wildtype
108	yes	high	wildtype
143	yes	high	wildtype

Efficacy of SAR405838 depends on tumor location

SAR405838 Concentration vs. Time Profiles in Plasma and Brain

Influence of Efflux Transporters at the BBB On Brain Penetration of SAR405838

SAR405838 - Plasma and Brain Distribution Kinetics

		Wild-type	Mdr1a/1b ^{-/-}	Bcrp1 ^{-/-}	Mdr1a/1b ^{-/-} Bcrp1 ^{-/-}
T _{1/2}	Hr	3.26	4.18	3.02	5.08
T _{max}	Hr	8	8	4	2
C _{max}	ng/ml	4651	3582	3976	6164
AUC _{inf_pred}	hr*ng/ml	61195	41382	47804	65867
Vz/F	ml/kg	1922	3642	2281	2779
CL/F	ml/hr/kg	409	604	523	380
AUC _{brain}	hr*ng/ml	1335	63234	1956	65442
K _{p,brain} (<u>AUC _{brain})</u> AUC _{plasma})	0.022	1.53	0.041	0.994
Distribution Advantage		1.00	70.0	1.88	45.5
	Distribution	Advantage	$= \frac{Kp \ knoc}{Kp \ wild}$	kout mice -type mice	- - 2

orthotopic GBM108 parental line

TexasRed

Cresyl Violet

Blood brain barrier integrity in orthotopic tumors. Near-moribund mice with orthotopic GBM108 tumors were injected with TexasRed-3 kDa dextran conjugate 10 min before euthanasia and processed for cresyl violet and fluorescent microscopy on serial histology sections. Accumulation of TR-dextran within the tumor reflects disruption of the BBB. Results presented are representative of five mice analyzed. Scale bar = 500μ m.

Heterogeneous Breakdown of Tumor BBB

G108-VEGFA Cell Line Generation

Spatial Distribution of SAR405838 (MALDI-MSI)

GBM108-Empty vector

GBM108-VEGFA

Orthotopic Survival

Conclusions for SAR405838 Study

- SAR405838, a potent MDM2 inhibitor, is subject to BBB efflux
- This preclinical study indicates enhanced delivery of SAR405838 will improve its efficacy
- Strategies to overcome limited delivery of drug across BBB will result in better treatment for brain tumors

Translation in the Clinic -Delivery and the BBB

Deb Brinkmann, Jann Sarkaria (Mayo Clinic)

Use of Uptake Transporters in BBB

LABORATORY INVESTIGATION

The role of LAT1 in ¹⁸F-DOPA uptake in malignant gliomas

Ryan S. Youland · Gaspar J. Kitange · Timothy E. Peterson · Deanna H. Pafundi · Judi A. Ramiscal · Jenny L. Pokorny · Caterina Giannini · Nadia N. Laack · Ian F. Parney · Val J. Lowe · Debra H. Brinkmann · Jann N. Sarkaria

Fig. 4 LAT1 expression correlates with ¹⁸F-DOPA SUVmedian in newly diagnosed human astrocytoma. Biopsy samples were taken from regions of high (*red outlined region*) and low (*blue outlined region*) ¹⁸F-DOPA uptake (a). Samples were then stained for LAT1

using immunofluorescence (green, Cy5-Lat1; blue, DAPI-nuclei). Regions of low (b) or high (c) ¹⁸F-DOPA uptake demonstrated corresponding low and high LAT1 expression, respectively

Deb Brinkmann, Jann Sarkaria - Mayo Clinic, Rochester

Discordance in tumor delineation by 18F-FDOPA PET and MRI.

Volumes defined for :

A) FDOPA positivity (yellow) by PET

B) T1 contrast enhancement (red) on T1 contrast enhanced images

C) FLAIR positive (blue)

outlined for a single patient

Structure	Structure Volume (cc) from Eclipse	PET Volume outside of T1-GAD (cc) from Eclipse	PET Volume outside of FLAIR (cc) from Eclipse	MR Volume outside of PET (cc) from Eclipse
T1-GAD	10.4		N/A	4.9
FLAIR	32.0	N/A	N/A	21.7
PET	19.5	13.8	9.1	N/A

Regions of tumor with intact BBB protected from treatment by efflux transporters and TJ

RT_FDOPA02 Grade IV Total Multi-focal FLAIR contour in blue T1-GAD contour in red PET contour in yellow

Orthogonal views with crosshairs turned on, for reference

Structure	Structure Volume (cc) from Eclipse	PET Volume outside of T1-GAD (cc) from Eclipse	PET Volume outside of FLAIR (cc) from Eclipse	MR Volume outside of PET (cc) from Eclipse
T1-GAD	47.7		N/A	33.2**
FLAIR	54.3	N/A	N/A	36.4
PET	21.7	7.1	3.8	

Regions of tumor with intact BBB protected from treatment by efflux transporters and TJ

RT_FDOPA05 Grade IV Total Single

FLAIR contour in blue T1-Gad contour in red PET contour in yellow **T1-GAD contour includes post-op cavity (not just enhancement)

> Orthogonal views with crosshairs turned on, for reference

Jann Sarkaria – Mayo Clinic Rochester

Screen capture of biopsy planning using the registered ¹⁸F-DOPA PET and T1-CE MRI in the Stealth[™] Neuronavigation System for blue needle locations at: A) a T1 contrast enhancing, PET positive (M+P+) location B) a non-contrast enhancing but PET positive (M-P+) location.

Received: 30 September 2016, Accepted: 23 January 2017, Published: 10 March 2017 Editor: David Schlossberg, Philadelphia Health Department, Philadelphia, PA Citation: Leonard JM. 2017. Central nervous system tuberculosis. *Microbiol Spectrum* 5(2):TNMI7-0044-2017. doi:10.1128 /microbiolspec.TNMI7-0044-2017. Correspondence: John M. Leonard, john.m.leonard@vanderbilt.edu

© 2017 American Society for Microbiology. All rights reserved.

Central Nervous System Tuberculosis

JOHN M. LEONARD¹

¹Department of Medicine—Infectious Disease, Vanderbilt University Medical Center, Nashville, TN 37232

CT scan

T1 – CE - MRI

T2 - MRI

Region specific disease, requires region specific consideration of drug delivery

Spatial and Temporal Changes in Delivery of Drugs as Disease Progresses

Questions:

- 1) In the tuberculomas, is there a change in drug penetration as they encapsulate?
- 2) Is there active disease in the peripheral regions that show edema?
- 3) What is the integrity of the BBB at different sites within an infected brain?
- 4) Are drug concentrations in each region adequate to treat disease?
- 5) Are there significant differences in delivery limitations amongst drugs used in the necessary combinations in different regions of disease?

Rifampin Concentrations in Various Compartments of the Human Brain: A Novel Method for Determining Drug Levels in the Cerebral Extracellular Space

THOMAS MINDERMANN,^{1*} WERNER ZIMMERLI,² AND OTMAR GRATZL¹ Neurological Surgery¹ and Infectious Diseases,² University Hospitals Basel, 4031 Basel, Switzerland

Rifampicin Spatial Differences in Distribution within the Human Brain

Determination of [¹¹C]Rifampin Pharmacokinetics within *Mycobacterium tuberculosis*-Infected Mice by Using Dynamic Positron Emission Tomography Bioimaging

Vincent P. DeMarco,^{a,b,c} Alvaro A. Ordonez,^{a,b,c} Mariah Klunk,^{a,b,c} Brendan Prideaux,^d Hui Wang,^e Zhang Zhuo,^e Peter J. Tonge,^e Robert F. Dannals,^f Daniel P. Holt,^f Carlton K. K. Lee,^c Edward A. Weinstein,^{a,b,g} Véronique Dartois,^d Kelly E. Dooley,^{b,g} Sanjay K. Jain^{a,b,c}

MALDI-MSI for Rifampicin Distribution in the Lung

Determination of [¹¹C]Rifampin Pharmacokinetics within *Mycobacterium tuberculosis*-Infected Mice by Using Dynamic Positron Emission Tomography Bioimaging

Vincent P. DeMarco,^{a,b,c} Alvaro A. Ordonez,^{a,b,c} Mariah Klunk,^{a,b,c} Brendan Prideaux,^d Hui Wang,^e Zhang Zhuo,^e Peter J. Tonge,^e Robert F. Dannals,^f Daniel P. Holt,^f Carlton K. K. Lee,^c Edward A. Weinstein,^{a,b,g} Véronique Dartois,^d Kelly E. Dooley,^{b,g} Sanjay K. Jain^{a,b,c}

PET scan for distribution of 11C-Rifampicin in *M. tuberculosis* Infected Mouse Model

Radiosynthesis and Bioimaging of the Tuberculosis Chemotherapeutics Isoniazid, Rifampicin and Pyrazinamide in Baboons

Table 1. LogD and PPB Determination

	LogD	PPB, ^a %	
RIF	1.67	27.32	
INH	nd^b	94.63	
PZA	-0.41	91.32	

^{*a*} Value expressed as % of free fraction in plasma. ^{*b*} Octanol–water partitioning was highly variable.

Parp1 inhibitor - Talazoparib

Talazoparib – Pgp substrate - poor penetration into the brain

