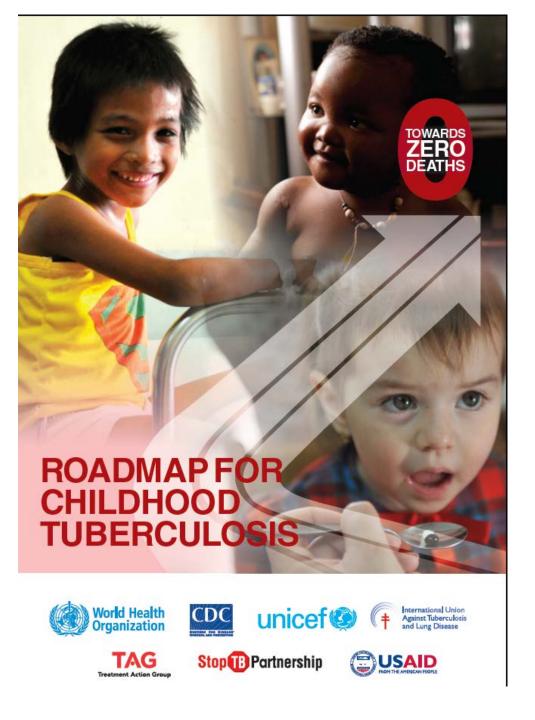
Antimicrobial Management of Pediatric TBM

Tuberculosis Meningitis Workshop: Advancing Immunopathogenesis, Diagnosis, and Treatment

May 23, 2017 NIH, Bethesda, MD

Presented by: Kelly Dooley MD, PhD Johns Hopkins University School of Medicine



Childhood TB: Towards Zero Deaths

- "Childhood TB needs to be lifted out of the shadows"
 Historical neglect
- 1,000,000 cases in 2015
- >169,000 deaths from TB yearly (41K in children with HIV)

Pediatric TB ≠ Adult TB: What does pediatric TB *look like*?

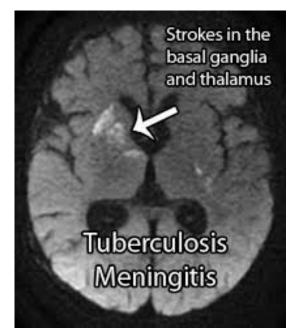
lt depen	<mark>ds (on how</mark>	<mark>/ old you</mark> are)!					
Disease ris	sk and presen	itation						
Age (yrs)	No disease	Pulmonary dz	TBM/miliary dz	Pulmona	ry disease			
<1	50	30-40	10-20	Age (yrs)	Ghon/LN	Bronchial	Effusion	"Adult-type"
1-2	70-80	10-15	2-5	<1	X	Х		
2-5	95	5	0.5	1-2	Х	Х		
5-10	98	2	<0.5	2-5	X	X		
>10	80-90	10-20	<0.5	5-10	X	X	Х	Х
				>10		A	X	X

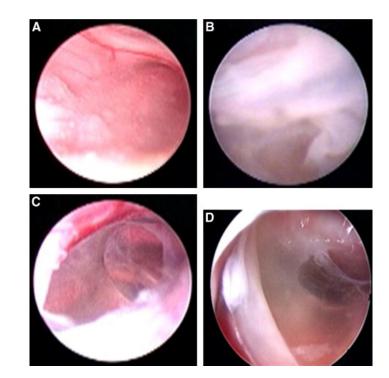
Table 4. Average age-specific risk for disease development following primary infection (immune-competent children)*

*Adapted from Marais et al 2004 IJTLD.

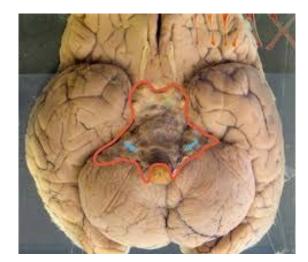
The natural history of childhood intra-thoracic tuberculosis: a critical review of literature from the pre-chemotherapy era

TBM: Epidemiology


- Develops within one year of infection (household contact)
- Highest risk for severe disseminated disease like TBM: < 3 years of age, HIV co-infection, malnutrition
- Majority of children **present at late stage**:
 - Stage I (no focal neurologic signs, intact sensorium)
 - Stage II (disturbed consciousness or focal neurologic deficit)
 - Stage III (coma +/- focal neurologic deficits)


Pediatric TBM: Clinical consequences

Catastrophic


- Dense meningeal exudate with adhesions (hydrocephalus, cranial nerve deficits)
- Obliterative vasculitis (strokes)
- Encephalitis/myelitis (reduced consciousness)

Figaji & Fieggen (2013) World Neurosurgery

Pediatric TB meningitis:

What does TBM do to the <u>developing brain</u>?

- Data are <u>sparse</u>: Cognitive and gross motor impairment, Behavioral difficulties, Emotional problems
 - Stage II and III TBM (N=554)
 - 6 months after treatment 58% with IQ deficit 50-80, 20% IQ deficit < 50 Van Well (2009) Pediatrics
 - Stage I-III TBM (N=123 children, ages 12-56 months)
 - 6-9 months after treatment, mild intellectual handicap 38% severe 25%
 - Stage II and III TBM (N=74)
 - Behavioural disinhibitions as well as internalized emotional disorder Wait (2010) J Trop Ped

Long-term neurocognitive outcomes, impact on functioning in society not well characterized

<u>Science</u>

- Is the disease *different* in children and adults
 - Pathophysiology, location of bacilli, outcomes?
- What, then, are we asking of our treatment?
 - Rapid kill, stop protein synthesis, kill 'persisters', prevent acquired resistance?
- How do we optimize drug delivery to sites of disease/construct a regimen?
 - Pick best CNS Multiparameter Optimization desirability score, IV formulation, hit hard early (prevent mortality), hit hard late (when BBB healed), intensive/continuation phase?
- Which drugs have highest likelihood of providing benefit? What outcomes are we interested in?
- Are there biomarkers that correlate with outcomes, Rx response?

Questions:

Logistics

- Whom to (pre)screen?
- Does the 'research definition' of probable TB work? Will Gene Xpert Ultra help?
- Drug doses across age/weight spectrum, formulations
- Is safety of drugs uniform across spectrum of disease? Handling stop/restart
- Is it remotely possible to enlarge a large pediatric TBM trial?

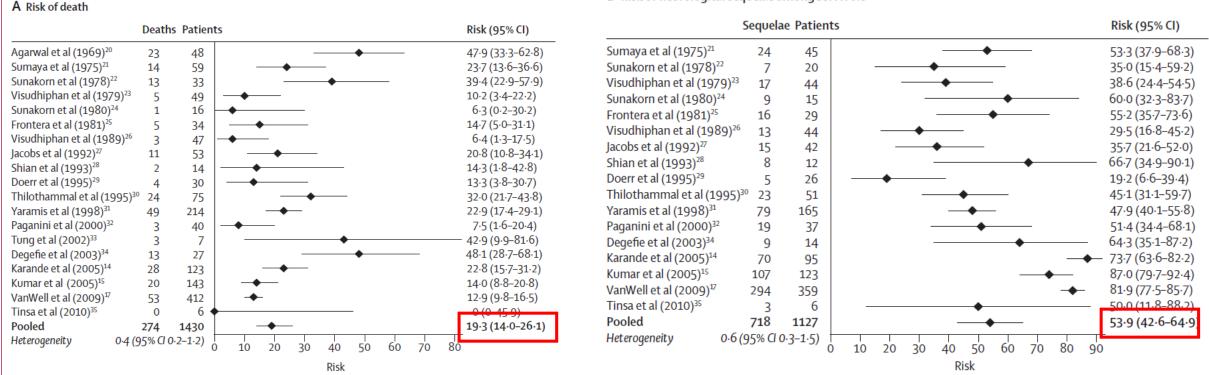
Treatment: Current "SOC"

Do TB Drugs get to the <u>site of infection</u>? WHO recommends 2HRZE/10HR with R dose of 10-20 mg/kg for TBM

Drug	CSF:serum ratio*
Isoniazid	0.8-1.0
Rifampicin	0.04-0.11
Pyrazinamide	0.79-1.05
Ethambutol	Negligible (<mic even="" meningitis)<="" td="" with=""></mic>
Ethionamide	Good
Fluoroquinolones	0.7-0.8

	Drugs*	Rifampin dose	Frequency	Duration
Malawi	2HRZ S/ 10HR	10-17 mg/kg	Daily	12 months
India	2H ₃ R ₃ Z ₃ E ₃ (or HRZ S)/10H ₃ R ₃	10-17 mg/kg	Thrice- weeklył	12 months
S Africa	6HRZ Eth	20 mg/kg	Daily	6 months
WHO	2HRZ E/ 10HR§	10-20 mg/kg	Daily	12 months

*Steroids (2 mg/kg/day prednisone or equivalent) are SOC everywhere


§Strong recommendation, low quality of evidence

[†]Changing to daily

Pediatric TBM: Treatment Outcomes

Treatment outcomes of childhood tuberculous meningitis: a systematic review and meta-analysis

Silvia S Chiang*, Faiz Ahmad Khan*, Meredith B Milstein, Arielle W Tolman, Andrea Benedetti, Jeffrey R Starke, Mercedes C Becerra

B Risk of neurological sequelae among survivors

27 Different Regimens, no RCT

Revised WHO dosing for children-

Are we achieving target plasma concentrations?

Drug	Revised dose	2-hour target	Mean	% achieving
			concentration	target
Isoniazid	10-15 mg/kg	3 mcg/mL	4.5 mcg/mL	65%
Rifampicin	10-15 mg/kg	8 mcg/mL	2.9 mcg/mL	6%
Pyrazinamide	30-40 mg/kg	20 mcg/mL	23 mcg/mL	55%
Ethambutol	15-25 mg/kg	2 mcg/mL	1.1 mcg/mL	15%

PHATISA Study (n=23, Durban, SA): Hiruy et al JAC doi:10.1093/jac/dku478

TBM: Rifampin prevents death

Long-term Mortality of Patients With Tuberculous Meningitis in New York City: A Cohort Study

Christopher Vinnard,¹ Liza King,² Sonal Munsiff,³ Aldo Crossa,² Kentaro Iwata,⁴ Jotam Pasipanodya,⁵ Douglas Proops,² and Shama Ahuja²

¹Public Health Research Institute, New Jersey Medical School, Newark, New Jersey, ²New York City Department of Health and Mental Hygiene, Bureau of Tuberculosis Control, Queens, and ³University of Rochester School of Medicine and Dentistry, New York; ⁴Division of Infectious Disease Therapeutics, Kobe University, Japan; and ⁵Center for Infectious Disease Research and Experimental Therapeutics, Baylor University, Dallas, Texas

Results. Among 257 TBM patients without rifampin-resistant isolates, isoniazid resistance was associated with mortality after the first 60 days of treatment when controlling for age and HIV infection (adjusted hazard ratio, 1.94 [95% confidence interval, 1.08–3.94]). Death occurred before completion of antituberculosis therapy in 63 of 67 TBM patients (94%) with rifampin-resistant disease.

See also Tho et al AAC 2012 HIV-associated TBM. INH resistance increased risk death 1.78-fold MDR-TBM uniformly fatal

CID 2017

Can we do better?

Improving *antimicrobial treatment* for TBM: **Higher-dose IV rifampin in adults**

ADULTS Α High-dose intravenous rifampicin 100-Standard-dose oral rifampicin 80 Survival (%) 60-40· 20-Adjusted hazard ratio 0.42 (95% CI 0.20-0.87); p=0.0193 0 30 60 90 120 150 180 n Number at risk High dose 29 23 22 20 20 20 19 Standard dose 31 19 14 13 13 12 11

Ruslami et al. (2013) Lancet ID 13: 27.

	Deaths	Univariable	Multivariable
Oral rifampicin 450 mg (n=31)	20 (65%)	1.00	1.00
Intravenous rifampicin 600 mg (n=29)	10 (34%)	0.42 (0.20-0.91)†	0.42 (0.20-0.91)†
No moxifloxacin (n=22)	10 (45%)	1.00	1.00
Moxifloxacin 400 mg (n=19)	8 (42%)	0.74 (0.29–1.89)§	0.76 (0.30–1.94)§
Moxifloxacin 800 mg (n=19)	12 (63%)	1.40 (0.60–3.25)§	1.27 (0.53–3.02)§
HIV positive (n=7)	4 (57%)		1.80 (0.59-5.53)
Glasgow Coma Scale at baseline			0.82 (0.68–0.99)

	600 mg, intravenous (n=26)	450 mg, oral (n=26)	
Plasma			
AUC ₀₋₆ (mg.h/L)	78.7 (71.0-87.3)	26·0 (19·0–35·6)	n.b. MIC fo
C _{max} (mg/L)	22.1 (19.9–24.6)	6-3 (4-9-8-3)	against MT
C _{max} (≥8 mg/L)	26 (100%)	13 (50%)	
T _{max} (h; median, range)	2 (1-2)	2 (1-6)	Rx for 14 d
CSF			
C _{max} (mg/L)§	0.60 (0.46-0.78)	0.21 (0.16-0.27)	17
			-

or RIF TB: 0.25

days

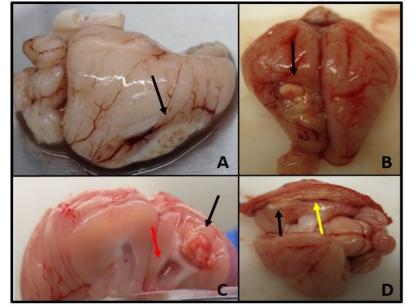
Drug-Sensitive pulmonary TB: The Role of Individual Drugs

INH: Early <u>bactericidal</u> activity, rapid reduction in organism burden

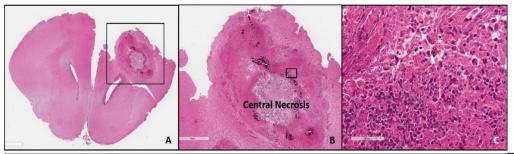
Rifampin:Unique sterilizing
contributor to cure without relapse

Pyrazinamide:Sterilizing activity in <u>acidic environments</u> over the first2 months, allowing for shortening of treatment

Ethambutol: Prevents resistance to other antibiotics


Drugs that may help

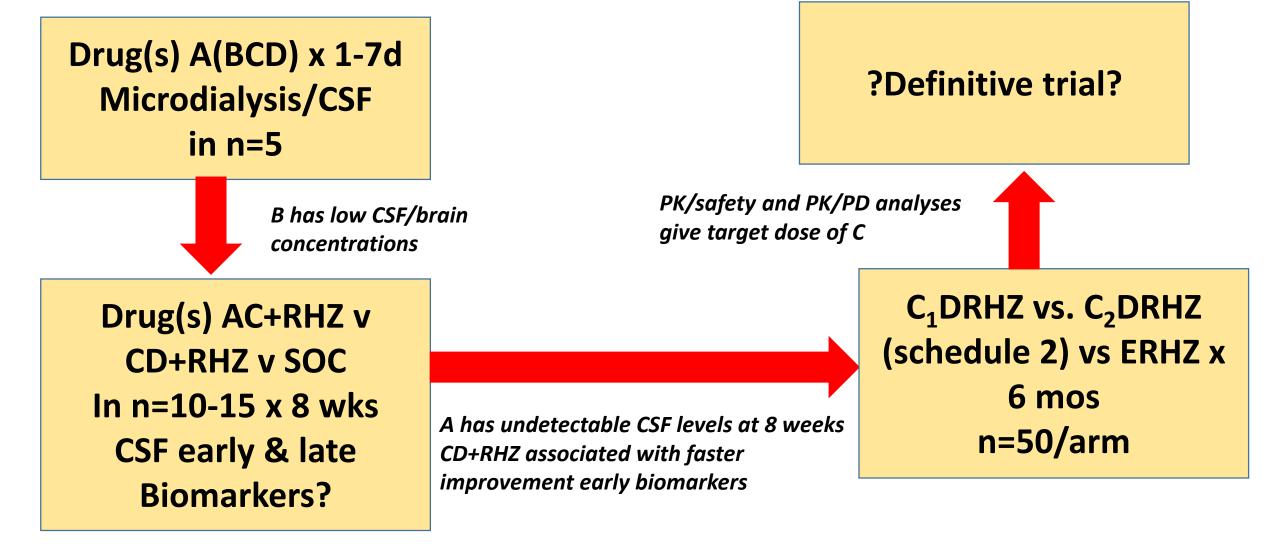
Drug	Supportive evidence	Pediatric gaps
Linezolid	CSF:plasma AUC ratio of 0.77 Faster GCS recovery with this drug in one study	PK-toxicity
Levofloxacin	Effective in INH-R TB in Vietnam trial	Dose, PK-safety
High-dose/IV rifampicin	13 mg/kg IV (=25-30 mg/kg PO) Indonesia	Formulation, dose by age/weight
Ethionamide	Stellenbosch experience	
Cycloserine	It makes you crazy	
Aminoglycosides	Good CSF levels when BBB inflamed	

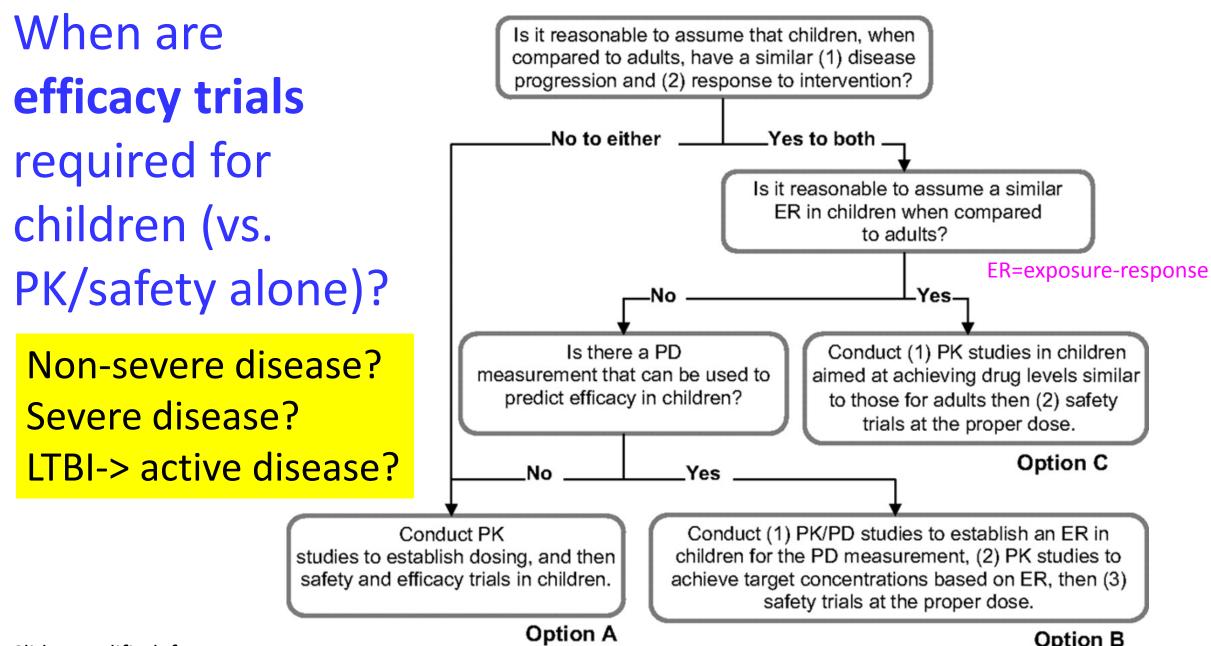

Absence/paucity of data

Rifabutin, delamanid, (bedaquiline), clofazimine, pretomanid, sutezolid...

CNS-TB: How about animal model testing first?

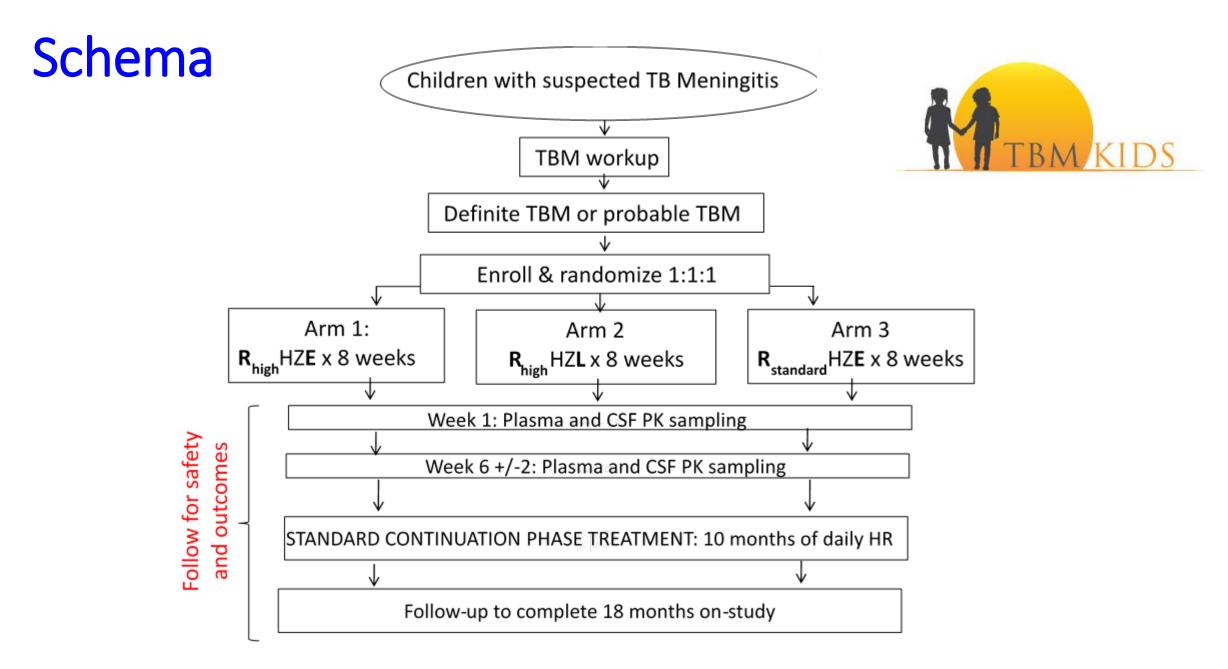
Fig. 2 Tuberculoma from Fig. 1C. H&E stain of brain section, 5µm. **A:** 10x magnification showing localization of tuberculoma to one hemisphere. Large black box around tubercuoma magnified to 20x in **(B)**. **B:** Central necrosis of tuberculoma with small black box at rim magnified to 40x in **(C)**. **C:** Dense cellular rim of tuberculoma.


Drug concentrations plasma ≠ lumbar CSF ≠ ventricular CSF ≠ brain


	Patient 1	
Plasma 2h	25000 ng/ml	
Plasma 4h	10000 ng/ml	
CSF (V) 4h	1250 ng/ml	
MD Fluid 2h	220 ng/ml	
MD Fluid 4h	150 ng/ml	

	Rabbit 1
Plasma 1h	2540 ng/ml
Plasma 2h	1750 ng/ml
Plasma 5h	290 ng/ml
CSF (V) 5h	BLQ
brain 5h	29 ng/g

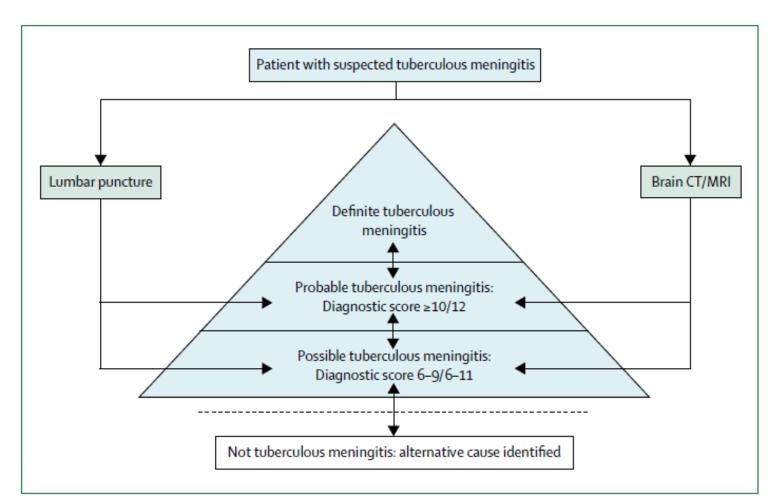
Figaji, Tucker, unpublished


Or, at the very least, staged, step-wise testing (ABCD hypothetical drugs, made-up scenarios)

Slide, modified, from FDA

Why this is very challenging

Dosing/formulation

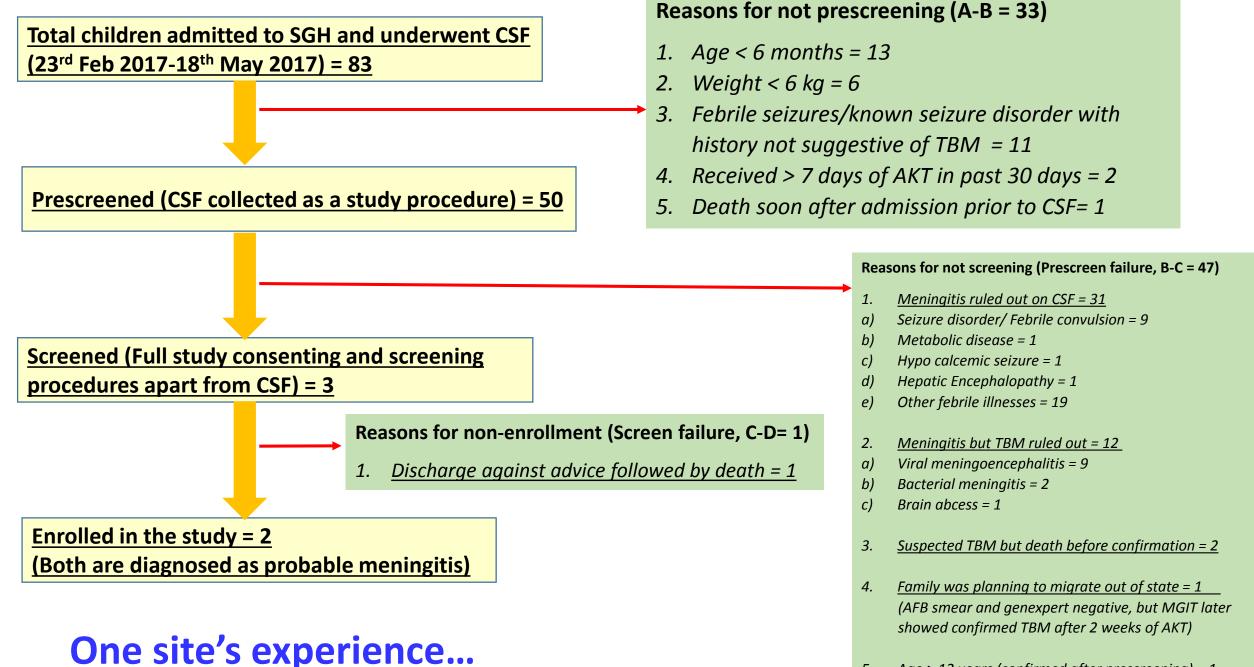

- Arm 2: R_{hi}HZL
 - **R**= 30 mg/kg
 - H= 10 (7-15) mg/kg
 - **Z**= 35 (30-40) mg/kg
 - L= 15 mg/kg (<2yo) 20 mg/kg (>2yo)

	FDC PLUS Rifampicin 20mg/mL suspension used to supplement							
weight	Dose @	Desired dose	FTC provides	Additional	suspension	#mL		
in kg	30mg/kg	in mg	in mg	mg needed	20mg/mL	required		
7	30	210	75	135	20	6.8		
8	30	240	150	90	20	4.5		
9	30	270	150	120	20	6.0		
10	30	300	150	150	20	7.5		

This is just one of the four drugs....

RHZ FDC ratio: 75/50/150

Consensus research definition


"Probable TB" could reasonably be used for clinical trials, but reduced sensitivity for Stage I TBM may be a concern

Points based on:

- Clinical criteria
- CSF criteria
- Cerebral imaging criteria
- Evidence of TB elsewhere
- Exclusion of alternative diagnoses

How does it perform?

- "Probable TB" sensitivity 86%, spec 100% for cultureconfirmed TBM
- "Possible TB" sensitivity 100%, specificity 56%

5. Age > 12 years (confirmed after prescreening) = 1

Managing toxicity

- Some scenarios
- How then to analyze the data

Resources (to share)

Measuring *functional* outcomes: Modified Rankin Scale for children

Score	Description
0	No symptoms at all
1	No significant disabilities despite symptoms in clinical examination; age appropriate behaviour and further development
2	Slight disability; unable to carry out all previous activities, but same independence as other age- and sex-matched children (no reduction of levels on the gross motor function scale)
3	Moderate disability; requiring some help, but able to walk without assistance; in younger patients adequate motor development despite mild functional impairment (reduction of one level on the gross motor function scale)
4	Moderately severe disability; unable to walk without assistance; in younger patients reduction of at least 2 levels on the gross motor function scale
5	Severe disability; bedridden, requiring constant nursing care and attention
6	Dead

Measuring *neurocognitive* outcomes: Mullen Scales of Early Learning

			500	re Sum	na	ly .		
Scale	Raw Score	T Sc M=50, S (Table	SD=10	Band of Erro % Confide (Table C.1)		Percentile Rank (Table C.2)	Descriptive Category (Table C.2)	Age Equivalent (Transfer from chart)
Gross Motor		\square	\bigcirc	±				
Visual Reception		\square		±				
Fine Motor		\square		±				
Receptive Language		C		±				
Expressive Language		C		±				
		\subset	\supset	Cognitive	TS	core Sum		
	Early Lean	ning	M=1	dard Score 00, SD-15 Table C.3)	_%	nd of Error 6 Confidenc (Table C.3)	e Percentile Rank (Table C.3)	Descriptive Category (Table C.3)
	Option	posite nal)			±			

Score Summary

Challenges:

- "Cultural fairness"
- Language
- Validation
- Very ill children
- Training
- Age range

Measuring *neurocognitive* outcomes: Mullen Scales of Early Learning

Scale 2. Visual Reception		Scale 3. Fine Motor	
Item	Score	Item	Scor
1. Fixates on and tracks triangle (S) ① fixates ② tracks		.d mo. 1. Arms flexed/hands fisted (S) 2. Holds ring reflexively (S)	1
 Tracks schematic face 90 degrees (S) Tracks moving bull's-eye 180 degrees (PPr). Localizes alternating red ball and schematic 	1 0 5	 3. Brings fist to mouth (P) 4. Bilateral orientation in midline (S) 5. Grasp reflex integrated (S) 	1
 5. Stares at own hand (S) 6. Localizes bull's-eye near and far (SSit) 7. Looks for dropped spoon (A/V) (SSit) 8. Pulls cord to obtain disc (SSit) 		 6. Grasps peg (ulnar palmar) (PPr or SSit)	1 1
 9. Looks for ring hidden under washcloth (Sit) ① partially hidden 20 fully hidden 10. Turns cup right-side up		 9. Refined grasp/thumb opposition (Sit) 10. Uses pincer grasp (Sit)	. 2 1
11. Makes object association	(1) 	12. Takes blocks out, puts blocks in	21
 15. Looks for toy covered, then displaced 16. Discriminates forms on formboard	10 💵	 S-29 mo 13. Uses two hands together	

Returning to Key Unanswered Questions:

- Is the disease *different* in children and adults?
 - Pathophysiology, location of bacilli, outcomes?
- Can Gene Xpert Ultra improve diagnostic accuracy in children?
- What are we asking of our treatment?
 - Rapid kill, stop protein synthesis, kill 'persisters', prevent acquired resistance?
- How can we use animal models and data from adult trials to derive most promising therapies to test in children?
- How do we optimize drug delivery to sites of disease/construct a regimen?
 - Pick best CNS Multiparameter Optimization desirability score, IV formulation, hit hard early (prevent mortality), hit hard late (when BBB healed), intensive/continuation phase?
- Are extent and rate of delivery into brain/CSF same across the age continuum?
- Which drugs have highest likelihood of providing benefit?
- Are there (CSF) biomarkers that can be used on trial level to discriminate among regimens?
- Can better antimicrobial therapy improve: mortality, functional outcome, neurocognitive outcomes?

Thank you.

NICHD: R01HD0774944

Collaborative team

- Johns Hopkins University
- BJ Government Medical College (BJMC)
 - Sassoon General Hospital
- National Institute for Research in Tuberculosis Chennai, India
 - Institute of Child Health (ICH)
- UNC/Project Malawi
 - Kamuzu Central Hospital
- University of California at San Francisco (UCSF) San Francisco, USA
- University of Cape Town (UCT) analytical lab Cape Town, S. Africa

Baltimore, USA

Pune, India

Lilongwe, Malawi